Village of Bridgeport Consumer Confidence Report 2021

The Village of Bridgeport has prepared the following report to provide information to you, the consumer, on the quality of our drinking water. Included within this report is general health information, water quality test results, how to participate in decisions concerning your drinking water and water system contacts.

What is the source of your drinking water?

The Village of Bridgeport now receives its drinking water from the City of Martins Ferry. The source of Martins Ferry drinking water is ground water received from eight wells located at the north end of First Street, between the Ohio River and State Route 7 in Martins Ferry. The Village of Bridgeport also has an emergency connection with the Belmont County Water System. This report does not contain information on the water quality received from The City of Martins Ferry or Belmont County Water, but a copy of their consumer confidence report can be obtained by contacting The City or Martins Ferry 740-633-1378, Belmont County Water 740-695-3144.

What are sources of contamination to drinking water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife; (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm sewer water runoff, and residential uses; (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; (E) Radioactive contaminants, which can be naturally-occurring or to be the result of oil and gas production and mining activities.

In order to insure that tap water is safe to drink, USEPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791).

Source Water Susceptibility Report

The Ohio EPA completed a study of the Martins Ferry Public Water Supply's source of drinking water to

identify potential contaminant sources and provide guidance on protecting the drinking water source. According to this study, the aquifer (water rich zone) that supplies water to Martins Ferry has a high susceptibility to contamination. This determination is based on the following:

- > The lack of a protective layer of clay or shale overlying the aquifer.
- > A relatively shallow depth (approximately 30 feet below ground surface) of the aquifer.
- > The presence of significant potential contaminant sources in the protection area due to the proximity of businesses within our aquifer boundaries.

This susceptibility means that under currently existing conditions, the likelihood of this aquifer becoming contaminated is relatively high. This likelihood can be minimized by implementing appropriate protective measures. The City will do everything that they can do to minimize any contamination, and properly test the water to detect any contamination that would occur. More information about the source water assessment or what consumers can do to help protect the aquifer is available by calling Donnie Neavin or Bill Suto at the Martins Ferry Water Plant at (740) 633-1378.

Who needs to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infection. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800) 426-4791.

About your drinking water

The EPA requires regular sampling to ensure drinking water safety. The Village of Bridgeport Water Department conducted sampling for bacteria, radiological, synthetic organic, and volatile organic contaminants. Samples were collected for a total of 75 different contaminants most of which were not detected in the Village of Bridgeport water supply. The Ohio EPA requires us to monitor for some contaminants less than once per year because the concentrations do not change frequently. Some of our data, though accurate, are more than one year old.

Some individuals are typically more vulnerable to lead in drinking water than the general population. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Village of Bridegport Water Department is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for thirty seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4719 or at http://www.epa.gov/safewater/lead

How do I participate in decisions concerning my drinking water?

Public participation and comment are encouraged at regular meetings of The Board of Trustees of Public Affairs which meets on the Second Tuesday of the Month at 6:00 PM. For more information on your drinking water contact Donnie Neavin at 740-633-2424

Listed below is information on those contaminants that were found in the Village of Bridgeport drinking water:

CONTAMINANTS (Units)	MCLG	MCL	Level Found	Range of Detections	Violation	Year Sampled	Typical Source of Contamination
RESIDUAL DISINFECTS							
Total Chlorine (ppm)	MRDLG=	MRDL=4	0.581 ppm	0.33 – 0.93 ppm	NO	2021	Water additive used to control microbe
INORGANIC COMPOUNDS				ļ			
Fluoride (ppm)	4	4	1.00 ppm	0.81 - 1.19 ppm	NO	2021	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrate (ppm)	10	10	3.34 ppm	NA	NO	2021	Runoff from fertilize use; Leaching from septic tanks, sewage Erosion of natural deposits.
Lead (ppb) Action Level (AL)	0	AL=15 ppb	90th % 3 ug/L	0.6-5.3 ppb	NO	2021	Corrosion of household plumbing Erosion of natural deposits.
Copper (ppm) Action Level (AL)	AL=1.3 ppm	AL=1.3 ppm	90th % .275ppm	.04514 ppm	NO	2021	Corrosion of household plumbing Erosion of natural deposits; Leaching from wood preservatives.
Barium (mg/L)	2	2	0.0444 (mg/L		No	2020	Discharge of drilling wastes: Discharge from metal refiner Erosion of natural deposits
Disinfection Byproducts					-		
TTHMs, (ppb) Total Trihalomethanes	NA	80	25.9ug/L	18.5-25.9 ug/L	NO	2021	By-product of drinking water chlorination
Haloacetic Acids (ppb)	NA	60	3.6ug/L	0-3.6ug/L	NO	2021	By product of drinking water chlorination

Definitions of some terms contained in this report:

Volatile Organic Compounds: 0

MRDL: Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

5ppb

NA

NO

2021

MRDLG: Maximum Residual Disinfectant Level Goal (MRDLG): The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

<u>Maximum Contaminant Level (MGLG)</u>: The levet of a contaminant that is allowed in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>Maximum Containment Level (MCL)</u>: The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best, best available treatment technology.

Parts per million (ppm) or Milligrams per Liter (mg/L) are units of measure for concentration as a contaminant. A part per million corresponds to one second in a little over 11.5 days.

<u>Parts per billion (ppb) or Micrograms per Liter (ug/L)</u> are units of measure for concentration of a contaminant. A part per billion corresponds to one second in 31.7 years.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

<u>The "<" symbol:</u> A symbol which means less than. A result of <5 means that the lowest level that could be detected was 5 and the contaminant in that sample was not detected.